

CERTIFIED PUBLIC ACCOUNTANT FOUNDATION LEVEL 2 EXAMINATIONS <u>F2.1 MANAGEMENT ACCOUNTING</u> DATE: WEDNESDAY 27, NOVEMBER 2024 MARKING GUIDE & MODEL ANSWERS

QUESTION ONE

Marking guide

(a) List of e	pight stens	followed	during	hudget	preparation	nrocess
(a) List of (a)	igni sicps	ionowcu	uuring	Duugei	preparation	process

Question	Criteria	Marks
Q1 (a)	Award 1 Mark for each step provided by the student	8
Q1 (b)	(i) Award 2 Marks for clear definition of flexible budget	2
	 (ii) ✓ Award 0.5 Mark for Flexed Sales and 0.5 Mark for Variance and interpretation ✓ Award 0.5 Mark for Flexed Raw Material and 0.5 Mark for Variance and interpretation ✓ Award 0.5 Mark for Flexed Labour and 0.5 Mark for Variance and interpretation 	1 1 1
	 Award 0.5 Mark for Flexed Variable costs and 0.5 Mark for Variance and interpretation Award 0.5 Mark for Total Direct Costs 	1 0.5
	 Award 0.5 Mark for Flexed Fixed Operating costs and 0.5 Mark for Variance and interpretation 	1
	 Award 0.5 Mark for Flexed Variable Operating costs and 0.5 Mark for Variance and interpretation 	1
	 Award 0.5 Mark for Flexed Fixed Selling&Distribution costs and 0.5 Mark for Variance and interpretation 	1
	✓ Award 0.5 Mark for Flexed Variable Selling&Distribution costs and 0.5 Mark for Variance and interpretation	1
	✓ Award 0.5 Mark for Total Direct Costs	0.5
	✓ Award 0.5 Mark for correct Net Operating Profit	1
	(b) (ii) Total Marks	10
Total		20

Model answers

a) Eight steps followed in the budget making process for a company

- 1. Determine the long-term objectives of the organization
- 2. Formation of a budget committee
- 3. Preparation of a budget manual
- 4. Identification of the principal budget factor (Limiting factor)
- 5. Preparation of an initial budget that factors in slack
- 6. Review of Initial Budget
- 7. Preparation of a master budget
- 8. Continuous review of the budget making process

(b) (i) Flexible budget:

Flexible budget is defined as A budget in which recognizing the difference in behavior between fixed and variable costs in relation to fluctuations in output, turnover, or other variable factors such as number of employees, is designed to change appropriately with such fluctuations.

Flexible budget is a budget which recognize different costs behavior patterns and is designed to changes as volume of activity changes

Flexible budgets take out the effect of volume changes between actual and budget, and focus instead on the variances resulting from changes in the efficiency with which resources are used, and from the price of the resources

		Flexed	Actual		Variance interpreta
Details	Working	budget	results	Variance	tion
Production		6,100,000	6,100,000		
	10,955,000*(6,1 00,000/5,200,00				
Sales	0)	12,851,058	11,420,000	(1,431,058)	Adverse
Direct costs:					
	3,170,700*(6,10				
Raw materials	0,000/5,200,000)	3,719,475	3,455,000	(264,475)	Favorable
	1,430,500*(6,10				
Labour	0,000/5,200,000)	1,678,087	1,685,000	6,913	Adverse
	976,300*(6,100,				
Variable costs	000/5,200,000)	1,145,275	737,400	(407,875)	Favorable
		6,542,837	5,877,400	(665,437)	
Operating costs					
	1,200,000*(6,10				
Fixed	0,000/5,200,000)	1,407,692	1,510,100	102,408	Adverse
	565,000*(6,100,				
Variable	000/5,200,000)	662,788	382,400	(280,388)	Favorable
Selling and					
distribution costs					
	1,218,600*(6,10				
Fixed	0,000/5,200,000)	1,429,512	1,430,000	488	Adverse
	1,072,000*(6,10				
Variable	0,000/5,200,000)	1,257,538	539,200	(718,338)	Favorable
Total costs		4,757,531	3,861,700	(895,831)	
Net operating profit		1,550,690	1,680,900	130,210	

(b) (ii) Revised operating statement using a flexible budget approach

QUESTION TWO

Marking guide

Question	Criteria	Marks
Q2 (a)	✓ Award 2 Mark for four well explained element of cost, if	8
	student only listed element of cost, award 1 Mark for each listed	
	element.	
Q2 (b)	✓ Award 1 Mark for correct abnormal loss and 1 Mark for abnormal gain	2
	 Award 1 Mark for Process1 cost per unit and 1 Mark for process2 cost per unit 	2
	 Award 1 Mark for calculate total cost of output and losses process 1 Mark for calculate total cost of output and losses for process2 	2
	✓ Award 2.5 Marks for process1 account	2.5
	✓ Award 2.5 Marks for process2 account	2.5
	Award 1 Mark for abnormal loss and gain account	1
Total		20

Model answers

- (a) Main element of costs in management accounting according to their behaviours are:
- **1. Variable costs:** these are costs which vary in proportion to the changes in level of activity of output or production.
- **2.** Fixed costs: These are costs which remain fixed irrespective of the level of activity or production of output in short term. i.e. Rent, insurance, salary of permanent staff.
- **3. Mixed costs:** also known as "**Semi-Variable Costs**" these are costs which has both elements of fixed and element of variable costs where fixes element remains constant in a certain range of activity while variable element varies with the changes in activity level. For example, electricity consumption in office can remain the same over the period of time while varies (increase/decrease) depending on the direct part of the production (Electricity consumed by machine involved in production).
- 4. Stepped costs-Remain fixed for sometime then change to variablencomponent.
- (b) Preparation of the process account and abnormal loss or gain for each assignment.

Assignment1	Working	Units
Actual output		13,500
	(8%*Frw	
Normal loss	15,000)	1,200
Abnormal loss		
(Balancing		
figure)		300
Input		15,000

Assignment2	Working	Units
Actual output		12,720
	(8%*Frw	
Normal loss	13,500)	1,080
Abnormal gain		
(Balancing		
figure)		(300)
Input		13,500

Step1: Determining output and losses

Step2: Calculate cost per unit of output and losses

For each assignment, the cost per unit is based on expected output

Process1	Working	Units
Expected output	(15,000 - (15,000*8%)	13,800

Cost per unit Process 1 = $\frac{Cost \ of \ input}{Expected \ units \ of \ output}$ = $\frac{Frw \ 20,500,000}{13,800}$ = Frw 1,486

Process2	Working	Units
Expected output	(13,500 - (13,500*8%)	12,420

Cost per unit Process2 = $\frac{Cost \ of \ input}{Expected \ units \ of \ output} = \frac{Frw \ 20,500,000}{12,420} = Frw \ 1,651$

Step3: Calculate total cost of output and losses

Process 1	Working	Total (Frw)	Process 2	Working	Total (Frw)
	(13,500*Frw			(12,720*Frw	
Cost of output	1,486)	20,054,348	Cost of output	1,651)	20,995,169
Normal loss		-	Normal loss		-
	(300*Frw			(1,080*Frw	
Abnormal loss	1,4860)	445,652	Abnormal loss	1,651)	(495,169)
Total costs		20,500,000	Total costs		20,500,000

Step 4: Complete process accounts

Process acc	count1				
	Unit	Total		Unit	Total
Process1	S	(Frw)	Process1	S	(Frw)
Cost of	15,0	20,500,00		1,20	
input	00	0	Normal loss	0	-
			Finished goods Account	13,5	20,054,34
			(13,500*Frw 1,486)	00	8
			Abnormal loss Account (300*Frw		
			1,486)	300	445,652
	15,0	20,500,00		15,0	20,500,00
Total	00	0		00	0

Process account							
Process2	Units	Total (Frw)	Process2	Units	Total (Frw)		
Cost of input	15,000	20,500,000	Normal loss	1,080	-		
Abnormal gain (700*Frw 1,486)	300	445,652	Finished goods Account (12,720*Frw 1,651)	12,720	20,995,169		
Total	15,700	20,995,169		15,700	21,995,169		

Abnormal loss or Gain Account							
Process2	Units	Total (Frw)	Process1	Units	Total (Frw)		
Abnormal			Abnormal				
gain	300	445,652	loss	300	445,652		
Total	300	445,652		300	445,652		

QUESTION THREE

Marking guide

Question	Criteria	Marks
Q3 (a)	Award 2 Mark for clear definition of JIT	2
Q3 (b)	✓ Award 1 Mark for formula of labour efficiency ratio	1
	✓ Award 1 Mark for formula of labour capacity ratio	1
	✓ Award 1 Mark for formula of labour production volume ratio	1
	✓ Award 1 Mark for formula of standard labour hours	$\frac{1}{4}$
	Maximum marks	4
	✓ Award 2 Mark for correct computation and interpretation of labour efficiency ratio	2
	✓ Award 2 Mark for correct computation and interpretation of labour capacity ratio	2
	✓ Award 2 Mark for correct computation and interpretation of labour production volume ratio	2
	Maximum marks	6
Q3 (c)	Award 2 Marks for each well listed and explained labour remuneration method. (if only listed, Award 1 Mark, if Listed and Explained, Award 2 Marks)	8
Total	·	20

Model answers

(a) **Just In Time (JIT):** also known as "Stockless Production" Refers to the inventory management system where no stock is held no raw material stock and no finished goods stock, but there will usually be a small amount of work-in-progress.

It is a method where rather than producing goods and supply them from stock, it focuses on producing exactly the amount of goods needed by the customers within exact time bound.

- (b) Computation of labour efficiency ratio, the labour capacity ratio and the production volume ratio and interpretation of the results
- (1) Labour efficiency ratio = $\frac{\text{standard labour hours for actual output x 100}}{\text{actual labour hours worked}}$

Standard labour hours for actual output = $\frac{12,000*100}{10,000}$ = 4,800 *hours*

Detail	Unit	Value
Budgeted labour hours	Hour	4,000
Actual labour hours	Hour	4,200
T1		,

Then,

Labour efficiency ratio =
$$\frac{4,800*100}{4,200}$$
 = 114% "F"

Note that;

- A ratio that is higher than 100 % is "Favourable (F)".
- If it is 100%, then standard labour hours for actual output are equal to actual labour hours.
- A ratio less than 100% is "Adverse (A)".
- The higher, the ratio, the better

(2) Labour capacity ratio= $\frac{\text{Actual hours worked x 100}}{\text{Budgeted hours}} = \frac{4,200 \text{ x 100}}{4,000} = 105\%$ "F"

(3) Labour production volume ratio= $\frac{\text{standard labour hours for actual outpuy x 100}}{\text{budgeted labour hours}}$

Labour production volume ratio= $\frac{4,800 \times 100}{4,000} = 120\%$ "F"

(c) Explanation of at least 4 types of labour remuneration method

- 1. FIXING WAGE RATES: Wage rates may be fixed by individual agreement between employer and employee, or more commonly by collective bargaining between trade unions and employers' associations. An employer may pay wages on an hourly basis, per piece, or may adopt one of the various bonus methods of payment, but the general principle of a wages policy is to obtain the maximum production per RWF of wages paid while maintaining an acceptable quality of production, within the limits
- 2. TIME RATES: This is a system of paying workers for the time worked rather than for work produced. It may be in the form of an hourly rate, or shift or weekly rate for an agreed number of hours.
- **3. INCENTIVE SCHEMES:** This is a system where employees are rewarded with additional earning depending on a given factors, mostly performance.
- **4. PIECE-RATES:** is a system where each worker is paid on his merits, and thus individual effort.
- 5. DIFFERENTIAL PIECE-RATE SYSTEMS: The principle behind differential piecerate systems is to introduce an additional incentive, at the point when most workers feel it is not worthwhile putting any more extra effort into their work - in other words, to encourage them to put in that extra effort.
- 6. **PREMIUM BONUS SCHEMES:** The main systems using the premium bonus principle are Halsey or Halsey-Weir and Rowan systems. These are important and most examination questions on incentive schemes will he based on them. In premium bonus systems a time allowance and not a piece rate is made for a job. The bonus arising from greater production is shared between employer and employee.
- **7. GROUP BONUS SCHEMES:** Incentive bonus schemes can be applied to the group as well as to individuals. The bonus is calculated for the group and shared among them on an agreed basis.

QUESTION FOUR

Marking guide

Question	Criteria	Marks
Q4	Process I Account:	1
	✓ Award 0.5 Mark for opening WIP and 0.5 Mark process I stock	
	✓ Award 0.5 Mark for material cost and 0.5 Mark for WIP c/f	1
	✓ Award 1 Mark for formula of labour costs	1
	✓ Award 1 Mark for formula of overhead cost	1
	✓ Award 1 Mark for balancing total	<u>1</u>
	Maximum marks for process I	$\frac{1}{5}$
	PROCESS I STOCK ACCOUNT	
	✓ Award 0.5 Mark for b/d and 0.5 Mark for process II balance	
	✓ Award 0.5 Mark for Process II completed	1
	✓ Award 0.5 Mark for stock b/f balance	0.5
	✓ Award 1 Mark for balancing total	0.5
	Maximum for Process I stock account	<u>1</u>

	3
Process II Account:	
✓ Award 0.5 Mark for opening WIP and 0.5 Mark process I stock	
✓ Award 0.5 Mark for material cost and 0.5 Mark for WIP c/f	1
✓ Award 1 Mark for formula of labour costs	1
✓ Award 1 Mark for formula of overhead cost	1
✓ Award 1 Mark for balancing total	1
Maximum marks for process II	1
Maximum marks for process fr	
	$\frac{1}{5}$
FINISHED STOCK ACCOUNT	5
FINISHED STOCK ACCOUNT	
✓ Award 0.5 Mark for b/d and 0.5 Mark profit/loss account	
✓ Award 0.5 Mark for completed process II and 0.5 Mark sales	
account b/f	
$\checkmark \text{ Award 1 Mark for balancing total}$	1
Maximum for Process I stock account	1
Waxinium for Frocess I stock account	1
	$\frac{1}{3}$
Amond 2 Marks for correct coloulation of Ower/Under	-
✓ Award 2 Marks for correct calculation of Over/Under	
absorption of overhead costs	
 ✓ Award 2 Marks for correct profit computation 	2
	2
Total	20

Model answers

PROCESS I ACCOUNT							
Details	Units	Cost/Unit	Total	Details	Units	Cost/Unit	Total
		Frw	Frw			Frw	Frw
Opening WIP	1,400	250	350,000	Process I stock	9,600	500	4,800,000
Material	8,800		2,000,000	WIP c/d	600	250	150,000
Labour			2,000,000				
Overhead (1,200*Frw 500		500	600,000				
Total	10,200		4,950,000		10,200		4,950,000
WIP bld	600	250	150,000				

PROCESS I STOCK ACCOUNT								
Details	Units	Cost/Unit	Total		Details	Units	Cost/Unit	Total
		Frw	Frw				Frw	Frw
Balance b/b	1,000	500	500,000		Process II	9,000	500	4,500,000
Completed Process1	9,600	500	4,800,000					
					Balance c/f	1,600	500	800,000
Total	10,600		5,300,000			10,600		5,300,000
Balance b/f	1,600	500.00	800,000					

PROCESS II ACCOUNT	1						
	Units	Cost/Unit	Total	Details	Units	Cost/Unit	Total
		Frw	Frw			Frw	Frw
Opening WIP	644	154.658	99,600	Finished stock	9,444	900	8,499,600
Process I stock	9,000	500	4,500,000	WIP c/d	200	500	100,000
Material			1,400,000				
Labour			2,100,000				
Overhead (2,000*Frw 250		250	500,000				
Total	9,644		8,599,600		9,644		8,599,600
WIP bld	200	250	50,000				

FINISHED STOCK	ACCOU	NT					
	Units	Cost/Unit	Total	Details	Units	Cost/Unit	Total
		Frw	Frw			Frw	Frw
				Profit & loss			
Balance b/d	1,111	900	999,900	a/c	10,000	900	9,000,000
				sales Balance			
Completed process II	9,444	900	8,499,600	c/f	555	900	499,500
Total	10,555		9,499,500		10,555		9,499,500
Balance b/f	555	900	499,500				

PRODUCTION OVERHEAD ACCOUNT					
	Amount	Details	Amount		
	1,150,000	Process I	600,000		
A stard sam on ditana		Process II	500,000		
Actual expenditure			1,100,000		
		Under/Over absorption of overhead*	50,000		
	1,150,000		1,150,000		

PROFIT AND LOSS ACCOUNT							
Details	Working	Amount (Frw)	Amount (Frw)				
Sales	(10,000*Frw 1,100)		11,000,000				
Less:							
Cost of sales	(9,000*Frw 900)	(8,100,000)					
Under absorption of overhead		(50,000)	(8,150,000)				
Profit			2,850,000				

QUESTION FIVE

Marking guide

Question	Criteria	Marks
Q5 (i)	Award 2 Mark for clear definition of margin of safety	2
Q5 (ii)	✓ Award 0.5 Mark for formula of BEP in units	0.5
	✓ Award 0.5 Mark for formula of BEP in value	0.5
	✓ Award 2.5 Mark for correct calculated BEP in units	2.5
	✓ Award 2.5 Mark for correct calculated BEP in value	<u>2.5</u> 6
	Maximum marks	6
Q5 (iii)	✓ Award 2 Mark for correct computation targeted profit units	2
	✓ Award 2 Mark for correct computation targeted profit value	2
	Maximum marks	$\frac{2}{4}$
Q5 (iii)	✓ Award 2 Mark for correct computation Margin of safety before increase	2
	✓ Award 2 Mark for correct computation Margin of safety after increase	2
	Maximum marks	4
Q5 (iv)	Award 1 Marks for four well listed and explained limitations of CVP analysis	4
Total		20

Model answers

(a) Margin of safety: This refers to the difference between a firm's actual or expected sales, and the sales which would be needed to break even. It may be expressed as a percentage of the actual sales.

(b) Computation of Break-even-point in units and value

Data given	Details	Amount (Frw)
1	Fixed costs	12,000,000
2	Variable costs per unit	67,500
3	Targeted profit in year 1	12,685,000
4	Selling price per unit	135,500
5	Expected sales after year 1	

- Break-even-point in unit = <u>Fixed costs</u> (Selling price per unit - Variable cost per unit)

Break-even-point in unit = $\frac{12,000,000}{(135,500-67,500)}$ = 176 units

- Break-even-point in value = Break-even point (in units) * Selling price per unit

Break-even point in value = 176 units * Frw 135,500 = Frw 23,911,765

(c) Targeted profit calculation in units = (Fixed costs + Targeted profit) (Selling price per unit – Variable cost per unit)

Targeted profit in units = $\frac{(12,000,000 + 12,685,000)}{(135,500 - 67,500)} = \frac{(12,000,000 + 12,685,000)}{(135,500 - 67,500)} = 363$ Units

Targeted profit in value= Targeted profit point (in units) * Selling price per unit or

Targeted sale Revenue in value = Activity level (Unit) for Targeted profit * Selling price per unit

Targeted profit in value = 363 units * Frw 135,500 = Frw 49,188,493

(d) Margin of Safety calculation:

 $Margin of Safety = \frac{(Current sales - Break-even sales)}{Current sales} \times 100\%$

Or

 $Margin \ of \ Safety = \frac{Budgeted \ sales \ Volume \ - \ Breakeven \ sales \ valume \)}{budget \ sales \ volume} \times 100\%$

Before increase of 10%

Margin of Safety = $\frac{(49,188,493 - 23,911,765)}{49.188,493} * 100 = 51\%$

After increase of 10%

Units to be sold at targeted profit **363 units**

10% increase, units become (363 units + 363 units * 10% = **399 units**

Targeted profit calculation in values = Targeted profit point (in units) × Selling price per unit

Targeted profit calculation in values = 399*units* * *Frw* 135, 500 = *Frw* 54, 107, 342

Margin of Safety = $=\frac{(54,107,342-23,911,765)}{54,107,342} * 100 = 56\%$

Margin of safety Unit= Budgeted sales volume - Breakeven sale volume

Margin of safety Unit= 399 Unit - 176 Unit = 223 Unit

Margin of safety Revenue = (Budgeted sales unit – Breakeven sales unit) * Sales price per unit

Margin of safety Revenue = 223 Unit * FRW 135,500 = FRW 23,848,000

(e) Limitation of CVP analysis

- ✓ The CVP analysis is time consuming
- \checkmark The analysis is only applicable to a single product
- ✓ Where there is difficult in classifying costs between variable and fixed, it is difficult to apply it
- \checkmark At all levels of output, it assumes that sales price remains constant
- \checkmark At all levels of output, it assumes that unit variable cost is constant
- ✓ At all levels of output, it assumes that fixed cost is constant which is not practicable in the long run
- \checkmark Inventory is not taken into consideration
- \checkmark It is not useful for production planning

QUESTION SIX Marking guide

Question	Criteria	Marks
Q6 (a)	Award 2 Mark for clear definition of limiting factor	2
Q6 (b)	✓ Award 1.5 Marks for computation of NTWC required supply	1.5
	✓ Award 1.5 Marks for computation of BTWC required supply	1.5
	Award 2 Marks for contribution per unit of the limiting factor	2
	✓ Award 1 Mark for correct ranking	1
	✓ Award 1 Mark for correct computation East African supply	1
	✓ Award 1 Mark for correct computation Dubai supply	1
	✓ Award 2 Marks for correct computation Euro Market supply	<u>2</u>
	Maximum marks	10
Q6 (c)	✓ Award 1 Mark for correct computation East African supply	1
	✓ Award 1 Mark for correct computation Dubai supply	1
	✓ Award 1 Mark for correct computation Euro Market supply	$\frac{2}{4}$
	Maximum marks	4
Q6 (d)	✓ Award 1.5 Mark for correct computation contribution	1.5
	✓ Award 1.5 Mark for correct computation net contribution	1.5
	✓ Award 1 Mark for advice	$\frac{1}{4}$
	Maximum marks	4
Total		20

Model answers

- (a) **Limiting factor:** This refers to any factor that is in scarce supply and that prevents an organization from expanding its activities further, for instance, it limits the organization's activities such as production capacity or evens supply capacity. Usually the objective is to maximize total profits which depend on getting the highest contribution margin per unit of the limiting factor.
- (b) The first step is to check whether the supply of each material is adequate or whether either or both of them represent a limiting factor.

	East African	Euro Market	Dubai Market	
Details	Market (EAM)	(EM)	(D M)	Total
Maximum sales				
demand (units)	170	160	155	
NTWC (kgs)	10	40	20	
Total NTWC				
required (Kg)	1,700	6,400	3,100	11,200
BTWC (Kgs)	30	55	44	
Total BTWC				
required (Kg)	5,100	8,800	6,820	20,720

* It is clear that for this, there will be sufficient NTWC to satisfy the maximum demand for the market but BTWC will be a limiting factor. Thus, we employ the decision rule of maximizing the contribution per unit of the limiting factor. Rank material BTWC in this order and then allocate according to this ranking.

Details	East African Market (EAM)	Euro Market (EM)	Dubai Market (DM)
Contribution per unit sold (FRW)	175	140	208
BTWC (Kgs)	30	55	44
Contribution per BTWC required			
(Kg)	5.83	2.55	4.73
Ranking	1st	3rd	2nd

*Therefore, NOT Ltd Should Supply as much to East African Market (EAM). Then, when maximum demand for Dubai Market (DM) has been met, any BTWC, should be supplied to Euro Market (EM).

The optimal supply plan for the next period will be:

Market	Recommended supply	BTWC supplied	Total contribution
East African Market			
(EAM)	170	5,100	29,750
Dubai Market (DM)	155	6,820	32,240
		11,920	61,990
Euro Market (EM)	61*	3,380 (Balance)	8,604
		15,300	70,594

(c) The recommended supply plan in part (b) does not include sufficient Euro Market (EM) to satisfy the requirements of 90 units. Some of the supply allocated to Dubai Market (DB) (second in the ranking) must be allocated to supply of Euro Market (EM). The recommended supply plan will now be as follows:

Market	Recommended supply	BTWC supplied	Total contribution
East African Market			
(EAM)	170	5,100	29,750

Market	Recommended supply	BTWC supplied	Total contribution
Dubai Market (DM)	119**	5,250**	24,818
		10,350	54,568
Euro Market (EM)	90*	4,950*	12,600
		15,300	67,168

*If 61 units required supply of 3,380 of BTWC; 90 units will require: (90*3,380)/61 = 4,950**Outstanding BTWC after East African Market of 5,100 and Euro Market of 4,950, remaining available BTWC is (15,300 - 5,100 - 4,950) = 5,250. Then, if 6,820 required 155, then, 5,250 will require: (5,250*155)/6,820 = 119 units

(d) Advice to the shareholders of GMS Ltd based on the performance results the portfolio to be closed out.

			Liquor store	
	Supermarket	Garage at	at	
Details	at Nyamata	Gikondo	Nyarutarama	Total
		180,000,00		490,000,00
Sales revenue (A)	100,000,000	0	210,000,000	0
		126,000,00		342,000,00
Variable costs (B)	80,000,000	0	136,000,000	0
				148,000,00
Contribution C=(A-B)	20,000,000	54,000,000	74,000,000	0
Less:				
Fixed costs (D)	31,000,000	21,000,000	40,000,000	92,000,000
Net contribution E=(C-				
D)	(11,000,000)	33,000,000	34,000,000	56,000,000

*Supermarket at Nyamata should be closed out from GMS Ltd portfolio as it is a loss making to the shareholders of GMS Ltd.

QUESTION SEVEN Marking guide

Question	Criteria	Marks
Q7 (a)	✓ Award 2 Mark for clear explanation of controllable cost	2
	✓ Award 1 Mark for each example of controllable cost	2
	✓ Award 2 Mark for clear explanation of non-controllable cost	2
	✓ Award 1 Mark for each example of non-controllable cost	<u>2</u>
	Maximum marks	8
Q7 (b)	✓ Award 1 Marks for correct computation of XY	1
	\checkmark Award 1 Marks for correct computation of X ²	1
	\checkmark Award 1 Marks for correct computation of Y ²	1
	✓ Award 1 Mark for correct formula of regression analysis	1
	✓ Award 2 Mark for correct computation b	2
	✓ Award 2 Mark for correct computation a	2
	✓ Award 2 Marks for correct alignment of regression equation	2
	✓ Award 2 Marks for correct next year total production forecast	<u>2</u>
	Maximum marks	12
Total		20

Model answers

(a) Difference between controllable and non-controllable costs

Controllable cost: Refers to the cost which can be influenced by the actions of a person in whom authority for such control is vested.

Example:

- 1. **Labour** cost can be influenced by the method of remuneration and the degree at management control which is exercised by a certain manager,
- 2. Advertisement costs in charge of the marketing department can control how much to be spent in advertisement and promotion
- 3. Training costs can be controlled

Non-controllable cost: Refers to the costs which cannot be influenced by a person in whom authority for such control is vested.

Example:

- 1. If the trade union demands an increase in wages the increment is non controllable cost. Similarly,
- 2. Utility costs (Electricity, water and gaz) those costs can not be controlled as they are fixed by the government depending on the market rate.
- 3. Depreciation of a building is a non-controllable cost to a manager as he does not have authority over depreciation.
- (b) Assume linear relationship between two activity level and total production costs

Activity level (unit)	Х
Cost	Y

Formula to be used for Regression Analysis Y = a + bX where **a**: is Fixed cost and **b**: is Variable cost.

Quarter	Χ	Y	XY	X^2
1	15,000	300,000	450000000	225000000
2	45,000	615,000	27675000000	2025000000
3	25,000	470,000	11750000000	625000000
4	55,000	680,000	3740000000	3025000000
5	30,000	520,000	1560000000	90000000
6	20,000	350,000	700000000	40000000
7	35,000	590,000	20650000000	1225000000
8	60,000	740,000	4440000000	360000000
Sum	285,000	4,265,000	168,975,000,000	12,025,000,000

$$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

Equation of regression line in form of Y = a + bX become:

b=208,931.55 a=9.1 R=96% Y=208,931.55+9.1X Where X the period (quarter) Quarter 1 of 2023, X=9

When X=9, Y=209,013.45

End of Marking Guide and Answer Model